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Abstract. A method to calculate perturbative corrections to the spectrum of a one- 
dimensional quantum chain in the scaling variable z is developed from the conformal 
invariance at its fixed point. Then, from the knowledge of certain correlation functions, 
one can calculate the first coefficients of the scaling functions. The method is applied 
successfully to the Ising model, where the corrections are also known from the exact 
solution. The first coefficients of the magnetic scaling functions of the Ising model are 
also obtained. 

1. Introduction 

In this paper we consider one-dimensional quantum chains, with an infinite number 
of sites N. Suppose the Hamiltonian of such a quantum chain to be conformally 
invariant at the critical point. If one succeeds in determining the central charge of 
this system-we restrict our considerations to c < 1-then all possible (not every 
representation has to be realised) energy eigenvalues are known at the critical point 
(Belavin et a1 1984, Friedan et a1 1984). The aim of this paper is to present a perturbative 
method to calculate corrections to the conformal spectrum due to an external field, 
i.e. to obtain the scaling functions perturbatively. 

Let us first review some known results. The spectrum of a quantum chain at the 
critical point in the finite-size scaling limit is given by certain products of two irreducible 
representations ( I R )  A and A of two commuting Virasoro algebras with the same central 
charge c (Friedan et a1 1984). We denote by A the highest weight, and by A +  r the 
rth level having degeneracy d(A, r )  of one I R  ofthe Virasoro algebra. (The degeneracies 
d(A, r)  can be computed using the character formulae of Rocha-Caridi (1985).) A 
state will be labelled by IA+ r, A +  f ;  i )  ( i  = 1,2 , .  . . , d(A, r ) d ( &  f ) ) .  The Hamiltonian 
is given by 

H‘=- J dv( T (  w) + 7( @)) +regular terms 
2.rr -“2 

where the limit N +CO is understood, T is the stress tensor and w = T + ~ U  ( -CO< T <  

cc, - N / 2 <  U < N / 2 )  is a variable on the strip ( @  = 7 - i ~ ) .  (We choose periodic or 
twisted boundary conditions on the strip.) The scaled energy gaps are given by 

N 9(A+ r, A +  f ;  i )  = lim -( E(A+ r, A +  f ;  i )  - E(0 ,O) )  = A +  r + A + f (1.2) 
N-= 2 n  

where we omit the index i if the state is non-degenerate, and E denotes the energy. 
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Now we are able to state the problem. If we introduce an external field p (for p 
one can choose, for example, the reduced temperature t = ( T - T,)/ T, or the magnetic 
field h )  some local fields 4 j ( w ,  C) of the conformal theory will couple to p, so that 

(1.3) 

where a; are unknown constants and 4, has scaling dimensions ( A ,  + r,, A, + 5 ) .  The 
choice T = 0 is arbitrary due to translation invariance in the 7 direction. (Sometimes 
we write +(T, U )  instead of 4(w, #).) As will be shown the operator 
pa; j?;/, du 4,(0, U )  gives, in k order, corrections proportional to 

where xi = Aj + rj + ij + 5. Let 

xp = min xj 
j ( a L + o )  

(1.5) 

and consider the limit p + 0, N + CO, zp = pN2-Xo fixed. In this limit only fields dj with 

xj = xp < 2 (1.6) 

will survive. From this we see that rj and 3 can only take the values 0 or 1 .  (Notice 
that in general one can have more restrictions on c$~, since only certain symmetries are 
broken by choosing zp different from zero.) 

Suppose that for a given p, there exists only one field 4j satisfying these conditions. 
Then for xp < 1 (for xp 3 1 one obtains in general ultraviolet divergent integrals) and 
zp small enough one obtains for the scaled energy gaps of the non-degenerate levels 
the Privman-Fisher (1984) universality hypothesis, namely 

9 ( A + r ,  i+P) = S ~ + r , i + i ( a i z p )  (1 .7)  

where is a universal function (the constant a i  is non-universal). Consider, 
for example, the universality class of the tricritical Ising model, which has the thermal 
exponent x, =$ and the magnetic exponent xh =&, (Wu 1982 and references therein). 
Its fixed point Hamiltonian is conformally invariant with central charge c = & (Dotsenko 
1984). Looking at the possible anomalous dimensions one finds for corrections in z ,  
and z h  only one solution of (1.6), namely rj = 3 = 0, A, = Ai = x,/2 and xh /2, respectively. 
This is also the case for the Ising model ( c  = f, for x = 1 the integrals for the energy 
gaps are convergent), the three-state Potts model ( c  = $) and the tricritical three-state 
Potts model ( c  = t ) ,  so that the Privman-Fisher universality hypothesis holds in all 
four cases for the thermal scaling variable z, and the magnetic one z h .  

The paper is organised as follows. In § 2 we present a method-which requires 
the knowledge of certain correlation functions-to calculate corrections to the energy 
gaps in zp .  We should stress that the method has been developed only for non- 
degenerate states. In § 3 we calculate corrections in z ,  to the energy gaps of the Ising 
model ( c  = 4) up to O( z f )  achieving full agreement with the results of Henkel (1987), 
obtained by explicit expansions of the exact solution. For periodic boundary conditions 
we also calculate the first corrections in z h ,  which were not known. A summary of our 
results is given in § 4. In the appendix we give the correlation functions of the Ising 
model that are needed to calculate corrections in z ,  in any order. 
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2. Perturbation theory using conformal invariance 

In this section we develop a method to calculate corrections in the scaling variable z 
(from now on we omit the index p )  to the non-degenerate levels of the conformal 
spectrum. Consider a strip of width N with periodic or twisted boundary conditions 
and let 

N I 2  

H = H'+ a z N X - 2  d u d ( 0 ,  U )  = H'+ V 

where the limit N + 00, z fixed is understood, 4 has dimensions ( A ,  + r I  , dl  + tl) and 
x = A ,  + rl  +A, + t ,  < 2. The generalisation to the case where the corrections are due 
to more than one local field will become obvious. 

Let lp, s) (s = 0,1 ,2 , .  . . ) denote the states with momentum p and energy E , ( p )  so 
that E s ( p ) ~ E T + , ( p ) .  We have \ A + r , A + t ) = i q , n ) ,  where q = A + r - A - ?  and n is 
fixed. In order to calculate corrections to the energy of this state, one has only to 
consider states /q ,  s), since the U integration in (2.1) acts as a projector. 

First we need to know the functions 

"I, 1 i ' h - l  

where (! = exp(2n/ N ) (  w, - w,+ , ) .  Notice that the summation indices need not to be 
integers ( Y, - F, are integers) and that the coefficients are N independent. 

In order to obtain the functions (2.2) consider first the case where A and A are 
different from zero (14, n )  = IA + r, d +  P)). Expanding the ( k  + 2)-point function 

( 4 A . i ( w O j  w O ) 4 ( w I ~  El)...4(wk, W k ) 4 A , i ( W k + l r  @ k + l ) )  

k r + 2 ( A + i J  =($) c a,,, ,  , Y i . i i i , ,  . G A 6 2 ' .  . t i k Z 3 . .  . i? (2.3) 
yo, .ui 
'0. . 'A 

and the two-point function 

(dA,i(wo, *o)4s,i(Wk+i9 * k + l ) )  

(2.4) 

one can show using the spectral decomposition (the state 14, n )  is supposed to be 
non-degenerate) that 

( 2 . 5 )  
a ( 4 ' " )  

If A and d are zero one has to replace 4a , s (w ,  E) by T(w)F(E) in (2.3). ( In  the 
appendix we remind the reader how to compute such correlation functions from those 
containing no T. If, say A = 0 and # 0, one has to treat the w and E dependence 
separately.) Choosing 

PI, . v h _ l , i . l .  ,iik = (bA+r.i+i)-'aA+,,a+,+v, ,A+r  ~ " A . l , A + ~ , i + i , i + i + ~ l ,  . i+ i .  

W,=(72+73+ . . .+  7 , ) + i V ,  (2 .6 )  
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where p:;,n),@k =  CY:;,",^^,,^, , p k .  For convenience, we introduce 

B(P2. q , n . k  9 P r )  (72,. . . , 7 k )  = sgn(P12. . . C L ~ ) p : ~ ~ ) . , ,  exP( -2 f IPtITt) (2.8) 
W 2 .  s W k # o  1 = 2  

where p ,  are positive integers. 

is supposed to be non-degenerate, we have ( V is given in (2.1)) 
Now we are able to list the first orders in perturbation theory. Since the state /q, n )  

(2.9) 
(2.rr)" 

E ' , " ( q ) = ( q ,  nlVlq, n ) = ~ a z B q , , , ,  

and consequently 

@ ' ) ( A +  r, A +  7) = ( 2 7 ~ ) " - ' u z ( B ~ , ~ ~ ~  - Bo,o,l) (2.10) 

Consider the second-order corrections 

(2.11) 
where uin = E!''- E!,". Here we have used U - '  = j: exp(-ax) dx for a > 0. Using the 
spectral decomposition, one obtains 

N / 2  

du2 (q,  nI4(0, ul)lq, i ) (q ,  il6(0, u2)Iq1 n) exp(-wln72) 
j - N / 2  i 

N / 2  

du2(q, n14(0, u M 7 2 ,  u*) /q ,  n). - - 
[-NI2 

Inserting this into (2.11) and using (2.8) one obtains 

(2.12) 

(2.13) 

and. consequently, 

9 ' 2 ' ( A +  r, A +  P) = -[(2rr)"-'uz]' d72(BEA;2(~2) - Bbt,!,;2(~2)). (2.14) 

For higher orders this can be generalised easily, supposing the standard formulae of 
perturbation theory are known. Here we give the results for the third and fourth order. 

I: 
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From 

(2.15) 

(2.17) 

one obtains 

9 ( 4 ' ( A +  r, A +  I) = - [ ( 2 ~ ) " - ' a z ] ~  loX d72 lo= d73 lo= dT4(IBq,n;4 ( l , l , l )  ( T 2 ,  73, 74) 

-Bq,n;i[Bkf:;:( 7 2  i- 7 3 ,  74) Bt<!i( 7 2  9 7 3  + 7411 

- B(2)  q , n ; 2 ( 7 2 +  7 3 ) B t ~ ; 2 ( 7 4 4 ) + ( B q , n ; l )  2 B q , n , 2 ( 7 2 + 7 3 +  (31 744)) 

n)-(O, 011) (2.18) 

where in the standard formulae (2.15) and (2.17) the index q has been omitted. 
Let us summarise. If the (k+2)-poin t  functions ( & x ( w o ,  C o ) 4 ( w l ,  C l ) .  . . 

4 ( w k ,  C k ) ~ A , ~ ( ~ k + l ,  Ck+l))  are known for every primary field dA,x of the conformal 
theory, then one can calculate the corrections to the non-degenerate spectrum of the 
conformal theory due to the perturbation (2.1) up to the kth order. 

3. Application to the Ising model 

In this section we calculate corrections in z, and  zh to the universality class of the 
Ising model using our previous results and compare the corrections in z, to the results 
of Henkel (1987) obtained from the exact solution for h = 0. For the sake of complete- 
ness, we give the Hamilton operator of this universality class, defined on a chain with 
N sites 

(3.1) 
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where ax, ay, a' are the Pauli matrices and A has the meaning of an inverse temperature. 
For h = 0 and all y (0 < y S l ) ,  there is a critical point at A, = 1 ( N  = CO), which can 
be described by the I R  of two Virasoro algebras with central charge c = f .  Choosing 
periodic or antiperiodic boundary conditions in (3.1) 

a( N +  1) = (-1)%(l) d=o, 1 (3.2) 

one obtains the Hamiltonians H"). Since H commutes for h = 0 with the charge 
operator 

(3.3) 

which has the eigenvalues 0 and 1, one is left with the blocks H&". It was shown 
(Cardy 1986, Henkel 1987) that the corresponding spectra S&" at the critical point 
can be described by the following sums of I R  of the Virasoro algebra: 

s!jo'=(O,O)O(:,~) 

@ O )  = (L L) 

a ' , "=( : ,0 )0 (0 , f ) .  

(3.4) 1 169 16 

The degeneracies d(A, r )  are equal to one only in the following cases (Henkel 1987): 
d ( & ,  r ) ,  r =0, 1,2; d ( f ,  r ) ,  r =0,  1,2,3; d ( 0 ,  r ) ,  r =0,2,3.  This is the situation for 
A = A,, h = 0 and N --* 00 in (3.1) (i.e. H = H').  Now for h = 0 consider the finite-size 
scaling limit N + w ,  A + A c  (=1)  and z = ( 1 - A ) N  fixed (the Ising model has the 
thermal exponent x, = 1) in (3.1). Then from the previous section we know that 

1 r N / =  

H = M c +  az lim - J duE(O,u )=HC+V 
N-cs N -NI2 

(3.5) 

where E is the energy density ( A = i \ = $ )  and the constant a is non-universal (i.e. y 
dependence). Consider for example the second-order corrections to the state ) r  +A, ?+ 
A). From the correlation functions ( U E E ~ )  and (aa) (see the appendix) one obtains 

c r + i k ,  ?+&lE(W, 9 % ) E ( W 2 ,  *2)Ir+&, ?+A) = ( ~ ) > ( 5 1 ) f m  
(3.6) 

fr(51) =++ 51/(1- 51) + 6'- 51 
so that 

B ( 1 )  
(1/16+r,1/16+i);2(T) = exp(-27)/[1- exp(-2~)1 

- ( l - ~ % ~ )  exp( -2~r ) - ( l  exp(-2+). (3.7) 

An analogous calculation for the ground state yields 

B ~ : & ( T )  = exp(-.r)/[l - e x p ( - ~ ~ ) ]  (3.8) 

so that from (2.14) we have 

9 ( 2 ) ( ~ + r , A + ~ ) = ( u z ) 2 [ l n 2 + ( l  -ar,o)/2r+(1 - S , , ) / ~ F I  r ,?=O,  1,2. (3.9) 
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We have calculated the first five orders in perturbation theory to all non-degenerate 
levels of the conformal spectra. Our results are 

S(r++j,  ~ + + j ) = ( r + ~ + B ) + a z t ( 2 6 ~ . ~ - 1 ) ( 2 6 , ~ - 1 )  

+(az)*[ln2+(1 -6,,o)/2r+(1 -6, ,) /2f]  

- ( a ~ ) ~ [ $ 5 ( 3 )  + (1 - 6,0)/8 r3 + (1 - 6,0)/8f31 

+ O( z6) (r, P = O ,  1 ,2)  

and for A and A equal to 0 or $ 
9( r + A, f +  A) = ( r  + A + f +  A) + (az)*( a (r, A )  + a ( f ,  A ) )  

+ (az)‘(p(r, A) + P ( f ,  A))  + O(z6) 

a ( r ,  0) = 1 + 1/(2r - 1) 

a ( r, i) = 1 / (2r + 1) 

p ( r ,  0) = 1 + 1/(2r-  i )3  

p(r ,  1)  = 1/ (2r+  1)3 

r = 0, 2 ,  3 

r = 0 ,  1 ,2 ,3  

(3.10) 

where 5 is the Riemann zeta function. 

with 
This reproduces the results of Henkel (1987)-obtained from the exact solution- 

a = (-1)o sgn(z)(1/2rry). (3.11) 

Thus, the coupling constant a has a simple dependence on the boundary conditions 
(6). The appearance of sgn(z) is not surprising (symmetric corrections for higher and 
lower temperatures than the critical one). 

Let us make one more remark. In the appendix we give the correlation functions 
which are needed to calculate corrections in z in any order, so that in principle it is 
possible to obtain the perturbation series (combinatorial problem) and thus the scaling 
functions. 

Finally we give the first expansion coefficients of the magnetic scaling functions. 
For A = A, consider the finite-size scaling limit N + CO, h + 0 and zh = /IN”’* fixed 
(& = Q  for the Ising model) in (3.1) with periodic boundary conditions, so that 

r N I 2  

(3.12) 

where (T has scaling dimensions A = A = &. Since the correlation functions with an 
odd number of (T vanish one obtains only even order corrections. Using the methods 
of the previous section we have obtained the second-order corrections to the scaled 
spectrum. For the charge sector zero we have 

9( r + i ,  F+$) = r +  f +  1 

9( r, f )  = r + f + [ bZh/ (2  7T)7’8]2( 1 - YrYi )  6 + o( Z: ) 

where yo= 1, y z = % ,  y 3 = m  and 

[ b Z h / ( 2 ~ ) ” ~ ] ~ 6  +o( Z:) O ~ r , f s 3  

r, f = 0,2,  3 
(3.13) 

512 

S = zo ($)?a= r(;+ 1 
8.009 492 725. .  . . 

Notice that the second-order corrections to the states l r + f ,  ?+f) ( O S  r, Fs 3) vanish. 
After a tedious calculation one obtains the second-order corrections in the charge 

sector one using the four-point function ((+(+(T(T) (see, e.g., Dotsenko 1984) 

9(&+ r, r, f =  0, 1 , 2  (3.14) + f )  = r + P + $ +  [ b z , , / ( 2 ? ~ ) ” ~ ] ~ (  6 - grF) + O( z t )  
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where g r i = X V  b:’b‘,“l/(v-$) and by’ are given by 

1 1 1 x x 2  

8 
31 

(1 - X)’I8 

(1+x) ’ /8  Y 

= E b‘,o’x‘ 

1 6 4 ~  + -x2 - 1 3 ~ ’  + ( l - ~ ) ~ ”  113 58 33 325 501 _ _ - _  
1 4 4 ( 1 + ~ ) ’ / ~ ( 8 x ~  x3 2x2 x 4 2 

A numerical calculation yields 

goo = -7.706 849 20 (1) 

gl,  = -0.006 666 83 (2) 

where the given errors are exact upper and lower bounds. 

g,, = 0.226 672 03 (2) 

g,, = 0.150 822 0 (2) 

g 2 ,  = 4.282 379 0 (1) 
(3.15) 

g,, = 0.617 748 4 (6) 

4. Conclusions 

We have presented a method-which uses conformal invariance and needs a knowledge 
of certain correlation functions-to calculate perturbative corrections to the non- 
degenerate levels of the conformal theory in the finite-size scaling limit, N + i\3, p + 0 
and z = p N 2 - X  fixed, where p is an external field (for example, reduced temperature 
( T - T,)/  T,, magnetic field h, etc) and x its corresponding exponent (0 < x < 2). Under 
certain assumptions-which can be easily tested for a concrete model-this method 
implies the Privman-Fisher (1984) universality hypothesis for the non-degenerate levels. 

The method has been applied to a system belonging to the universality class of the 
Ising model in the finite-size scaling limit ( h  = 0), N + CO, A -, A,, z = ( A ,  - A )  N fixed 
( A  is an inverse temperature), reproducing the scaling functions-which are known 
from the exact solution for h = Qup to O(z6). Since, in this model, all correlation 
functions that are needed to calculate corrections in z are known (see the appendix), 
it should be possible to obtain the perturbative series (combinatorial problem) and 
thus the scaling functions. As a byproduct we have obtained the correlation functions 
( ( T E E .  . . &U) of the Ising model. For this model we have also considered the finite-size 
scaling limit A = A,, N - ,  CO, h + 0 and zh = hN”” fixed, thus obtaining the first 
expansion coefficients of the magnetic scaling functions. 
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where L - , 4 i  = 4 A , + l . ~ , .  If one omits the T this formula holds, too. Generally it is 
more convenient to give correlation functions on the plane than on the strip. They 
are related by the transformation 

w-z=exp($w) 

where z is a variable on the plane. Under this transformation we have 

where c is the central charge. 
From these formulae and  from 

one sees that it is sufficient to know certain correlation functions on the plane containing 
only primary fields in order to compute corrections in a scaling variable zp  to the 
conformal spectrum. After these well known remarks, let us list all the correlation 
functions of the Ising model that are needed to calculate the corrections in the scaling 
variable z ,  = N (  T - Tc) /  T, ( T + T,, N + 00) to the non-degenerate levels of its confor- 
mal spectra, i.e. 

(A51 

where E is the energy density and 4 is a primary field of the theory ( 4  = U, I), & E ,  or  
a).  Since E ( Z ,  f) = $(z)$(Z), and I) and & are free Majorana fields (see, e.g., Belavin 
et al (1984)), one has 

( 4 ( Z I ,  f l ) E ( Z Z ,  52) . . . E(Zlr F I ) 4 ( Z l + l ,  % + I ) )  l € N  

( i ( f l )  * . . = ( $ ( z , )  . . . I ) (zn))  

and 

PI <P3 ( " '  ( P 2 1 -  1 

P24 - 1  <P2i 

Therefore, if #J E {I, $, $, E } ,  the correlation functions of (A5) are known. 
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and 

We will show that for 1 > 2 (A7) remains valid, with 

PI'P3'""P 2 1 - 1  

where 

First of all notice that the correlation functions (a([, t ) & ( z 1 ,  Z 1 ) .  . . E(z,, f,,)v(q, ij)) 
given by these expressions are local and symmetric under (5, <) t) (77, ij) and (z,, 2 , )  t, 
(z], 2,). One can easily show that the expressions (A9) satisfy all cluster properties 
and  that the leading term of every short distance expansion is the correct one. 

One can also see that these correlation functions are invariant under the small 
conformal group (they satisfy the corresponding differential equations). So it is 
sufficient to show that the following second-order differential equations are satisfied: 

(A1 1 )  

where 

1 
a,. 3-z (z ,  z,) =-+- 

( Z - z , y  z -z ,  
A, 
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Let 

and 

Then for n = 2k in (A12), we have 

PICP3<" '<P2h-I  
P2,- I <P2, 

I f  i 

- n n  
x ( v ( ~ ) E ( z ~ ) E ( z ~ ) .  . . E ( z ~ ) .  . . E ( z ~ ) .  . . E ( z , ) .  . . E ( z ~ ~ ) c ( ~ ) ) = O  (A14) 

where we have used the fact that the correlation function ( (+( [ )&(z1)&(zp2)(+(~))  satisfies 
the corresponding differential equation and  where an explicit calculation shows that 
the expression in square brackets vanishes. Using this result we have for n = 2k + 1 in 
(A12) (the differential equation for ((+(5)&(z1)(+( 7)) is satisfied) 

Ifj 

since the expression in brackets vanishes. 
Let 
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Equation ( A l l )  is obtained by induction in k. For n = 2k we have 

The expression in brackets vanishes here, too. 
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